If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-662w-9612=0
a = 1; b = -662; c = -9612;
Δ = b2-4ac
Δ = -6622-4·1·(-9612)
Δ = 476692
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{476692}=\sqrt{4*119173}=\sqrt{4}*\sqrt{119173}=2\sqrt{119173}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-662)-2\sqrt{119173}}{2*1}=\frac{662-2\sqrt{119173}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-662)+2\sqrt{119173}}{2*1}=\frac{662+2\sqrt{119173}}{2} $
| 4x-15+5x=-6-75 | | 4x-15+5x=-6-76 | | w^2+150w+5625=0 | | 6*b-b=15 | | -9x-15=-2x-50 | | (w-4)(w-6)=0 | | x*3=144 | | 4p–14=-58 | | 7n^2-14n=0 | | -8p-9=8-5p-9 | | 14=n/12 | | x=37=6 | | 12h-2h-(-3h)+-15h=6 | | 8v-6v+4v-2v-3v=5 | | w^2+2w-10=25 | | 1+9/4y=1/8y | | -11c-(-8c)+7c=16 | | 7m^2-9072=0 | | 7m^2-7092=0 | | -5(5+x)=65 | | (4x-1)(2x+3)=(x+3)(x1) | | 5v-5v+4v+v=15 | | 3m^2-675=0 | | 9x+4=x-52 | | 5w-3w+4w-2w=16 | | 2m^2-675=0 | | -3(x-4)=-6x+30 | | 600y−240=143 | | -5x+70=-15x-210 | | -4m-11m+14m-7m+-10m=18 | | -20+14x=11+13x | | 4+9-3x+10=20 |